35.

Rate enhancement of phenol hydrogenation on Pt by hydronium ions in the aqueous phase Yang, G.; Maliekkal, V.; Chen, X.; Eckstein, S.; Shi, H.; Camaioni, D. M.; Baráth, E.; Haller, G. L.; Liu, Y.; Neurock, M.; Lercher, J. A., J. Catal. 2021, 404, 579-593.

34.

Influence of intracrystalline ionic strength in MFI zeolites on aqueous phase dehydration of methylcyclohexanols Milakovic, L.; Hintermeier, P. H.; Liu, Y.; Baráth, E.; Lercher, J. A., Angew. Chem. Int. Ed. 2021, 60, 24806-24810.

33.

Role of the ionic environment to enhance activity of reacting molecules in zeolite pores Pfriem, N.; Hintermeier, P. H.; Eckstein, S.; Kim, S.; Liu, Q.; Shi, H.; Milakovic, L.; Liu, Y.; Haller, G. L.; Baráth, E.; Liu, Y.; Lercher, J. A., Science 2021, 372, 952-957.

32.

Selective heterogeneous transfer hydrogenation from tertiary amines to alkynes Roeder, G. J.; Kelly, R. H.; Yang, G.; Bauer, T. J.; Haller, G. L.; Batista, V. S.; Baráth,  E. ,ACS Catal. 2021, 11, 5405-5415.

31.

Alkylation of lignin-derived aromatic oxygenates with cyclic alcohols on acidic zeolites Liu, Y.; Cheng, G.; Baráth, E.; Shi, H.; Lercher, J. A. Appl. Catal. B: Environ. 2021, 281, 119424.

30.

Towards understanding and predicting the hydronium ion catalyzed dehydration of cyclic- primary, secondary and tertiary alcohols Milakovic, L.; Hintermeier, P. H.; Liu, Q.; Shi, H.; Liu, Y.; Baráth, E.; Lercher, J. A., J. Catal. 2020, 390, 237-243.

29.

Selective conversion of C=O bond via (asymmetric) transfer hydrogenation on heterogeneous catalysts (Review) Baráth, E., Synthesis, 2020, 52, 504-520. (in the special issue “Future Stars in Organic Chemistry” of the JSP fellows of the 54th Bürgenstock Conference).

28.

A celebration of science amidst nature: The 54th Bürgenstock Conference (Conference review) Baráth, E.; Mejía, E., Angew. Chem. Int. Ed. 2019, 58, 2-10.

27.

Rate enhancement by Cu in NixCu1-x/ZrO2 bimetallic catalysts for hydrodeoxygenation of stearic acid Denk, C.; Foraita, S.; Kovarik, L.; Stoerzinger, K.; Liu, Y.; Baráth, E.; Lercher, J. A., Catal. Sci. Technol. 2019, 9, 2620-2629.

26.

Catalytic decomposition of the oleaginous yeast Cutaneotrichosporon Oleaginosus and subsequent biocatalytic conversion of liberated free fatty acids Braun, M. K.; Lorenzen, J.; Masri, M.; Liu, Y.; Baráth, E.; Brück, T.; Lercher, J. A., ACS Sustainable Chem. Eng. 2019, 7, 6531-6540.

25.

Influence of hydronium ions in zeolites on sorption Eckstein, S.; Hintermeier, P. H.; Zhao, R.; Baráth, E.; Shi, H.; Liu, Y.; Lercher, J. A., Angew. Chem. Int. Ed. 2019, 58, 1-7.

24.

Hydrogen transfer reactions of carbonyls, alkynes, and alkenes with noble metals in the presence of alcohols/ethers and amines as hydrogen donors (Review) Baráth, E., Catalysts 2018, 8, 671-696.

23.

Solvent determined mechanistic pathways in zeolite H-BEA catalyzed phenol alkylation Liu, Y.; Baráth, E.; Shi, H.; Hu, J.; Camaioni, D. M.; Lercher, J. A., Nature Catal. 2018, 1, 141–147. (http://rdcu.be/FQ1Q)

22.

H-Transfer reactions of internal alkenes with tertiary amines as H-donors on carbon supported noble metals Yang, G.; Bauer, T. J.; Haller, G. L.; Baráth, E. Org. Biomol. Chem. 2018, 16, 1172-1177.

21.

Hydronium-ion-catalyzed elimination pathways of substituted cyclohexanols in zeolite H-ZSM5 Hintermeier, P. H.; Eckstein, S.; Mei, D.; Olarte, M. V.; Camaioni, D. M.; Baráth, E.; Lercher, J. A., ACS Catal. 2017, 7, 7822-7829. 

20.

Deoxygenation of palmitic acid on unsupported transition metal phosphides Peroni, M.; Lee, I.; Huang, X.; Baráth, E.; Gutiérrez, O.; Lercher, J. A., ACS Catal. 2017, 7, 6331-6341.

19.

Elementary steps and reaction pathways in the aqueous phase alkylation of phenol with ethanol Eckstein, S.; Hintermeier, P. H.; Olarte, M. V.; Liu, Y.; Baráth, E.; Lercher, J. A., J. Catal. 2017, 352, 329-336.

18.

Enhancing the catalytic activity of hydronium ions through constrained environments Liu, Y.; Vjunov, A.; Shi, H.; Eckstein, S.; Camaioni, D. M.; Mei, D.; Baráth, E.; Lercher, J. A., Nature Commun. 2017, 8, 14113.

17.

Acid-base controlled carbon-carbon bond scission pathways in the deoxygenation of fatty acids on transition metal sulfides Wagenhofer, M. F.; Baráth, E.; Gutiérrez, O. Y.; Lercher, J. A., ACS Catal. 2017, 7, 1068-1076.

16.

Controlling hydrodeoxygenation of stearic acid to n-heptadecane and n-octadecane by adjusting the chemical properties of Ni/SiO2-ZrO2 catalyst Foraita, S.; Liu, Y.; Haller, G. L.; Baráth, E.; Zhao, C.; Lercher, J. A., ChemCatChem 2017, 9, 195-203.

15.

Dehydration of 1-octadecanol over H-BEA: A combined experimental and computational study Song, W.; Liu, Y.; Baráth, E.; Wang, L.; Zhao, C.; Mei, D.; Lercher, J. A., ACS Catal. 2016, 6, 878-889.

14.

Bulk and γ-Al2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid Peroni, M.; Mancino, G.; Baráth, E.; Gutiérrez, O. Y.; Lercher, J. A., Appl. Catal. B: Environ. 2016, 180, 301-311.

13.

Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles Kasakov, S.; Shi, H.; Camaioni, D.; Zhao, C.; Baráth, E.; Jentys, A.; Lercher, J. A., Green Chem. 2015, 17, 5079-5090.

12.

Rh-catalyzed hydroformylation of 1,3-butadiene to adipic aldehyde: Revealing selectivity and rate determining steps Schmidt, S.; Baráth, E.; Larcher, C.; Rosendahl, T.; Hofmann, P., Organometallics 2015, 34, 841-847.

11.

Synergistic effects of Ni and acid sites for hydrogenation and C−O bond cleavage of substituted phenols Song, W.; Liu, Y.; Baráth, E.; Zhao, C.; Lercher, J. A., Green Chem. 2015, 17, 1204-1218

10.

Glucose and cellulose derived Ni/C-SO3H catalysts for liquid phase phenol hydrodeoxygenation Kasakov, S.; Zhao, C.; Baráth, E.; Chase, Z. A.; Fulton, J. L.; Camaioni, D. M.; Vjunov, A.; Shi, H.; Lercher, J. A., Chem. Eur. J. 2015, 21, 1567-1577.

9.

Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2 Foraita, S.; Fulton, J. L.; Chase, Z. A.; Vjunov, A.; Xu, P.; Baráth, E.; Camaioni, D. M.; Zhao, C.; Lercher, J. A., Chem. Eur. J. 2015, 21, 2423-2434.

8.

Synthesis and characterization of crotyl intermediates in Rh-catalyzed hydroformylation of 1,3-butadiene Schmidt, S.; Baráth, E.; Prommnitz, T.; Rosendahl, T.; Rominger, F.; Hofmann, P., Organometallics, 2014, 33, 6018-6022.

7.

Rhenium complexes bearing phosphole-pyridine chelates: simple molecules with large chiroptical properties Takács, E.; Escande, A.; Vanthuyne, N.; Roussel, C.; Lescop, C.; Guinard, E.; Latouche, C.; Boucekkine, A.; Crassous, J.; Réau, R.; Hissler, M., Chem. Commun. 2012, 48, 6705-6707.

6.

Synthesis of new steroidal derivatives by the reaction of steroid ― amino acid conjugates with N,N’-dicyclohexyl-carbodiimide – Unusual formation of steroidal imide derivatives Takács, E.; Háda, V.; Mahó, S.; Berente, Z.; Kollár, L.; Skoda-Földes, R., Tetrahedron 2009, 65, 4659-4663.

5.

Investigation of the effect of the ligand/palladium ratio on the catalytic activity of reusable palladium / phosphine / ionic liquid systems in aminocarbonylation of 17-iodo-androst-16-ene with amino acid ester nucleophiles Takács, E.; Skoda-Földes, R., Lett. Org. Chem. 2009, 6, 448-452.

4.

Facile synthesis of primary amides and ketoamides via a palladium-catalysed carbonylation – deprotection reaction sequence Takács, E.; Varga, Cs.; Skoda-Földes, R.; Kollár, L., Tetrahedron Lett. 2007, 48, 2453-2456.

3.

Prolinates as secondary amines in aminocarbonylation: synthesis of N-acylated prolinates Takács, E.; Skoda-Földes, R.; Ács, P.; Müller, E.; Kokotos, G.; Kollár, L., Lett. Org. Chem. 2006, 3, 62-67.

2.

Homogeneous catalytic aminocarbonylation of iodoalkenes and iodobenzene with amino acid esters under conventional conditions and in ionic liquids Müller, E.; Péczely, G.; Skoda-Földes, R.; Takács, E.; Kokotos, G.; Bellis, E.; Kollár, L., Tetrahedron 2005, 61, 797-802.

1.

Palladium-catalysed aminocarbonylation of steroidal 17-iodo-androst-16-ene derivatives in N,N’-dialkyl-imidazolium-type ionic liquids Skoda-Földes, R.; Takács, E.; Horváth, J.; Tuba, Z.; Kollár, L., Green Chem. 2003, 5, 643-645.