Catalysis with late transition metals

Dr. habil. Torsten Beweries

The group investigates fundamental aspects of late transition metal catalysed processes on the basis of synthetic organometallic chemistry with the aim of understanding structure-activity relationships for an optimisation of catalytic reactions. We are focussing on various aspects of activation and transformation of small, partly unreactive molecules such as H2O, N2, CO2, or H2.1

The catalytic formation of bonds between main group elements was widely investigated in recent years, mainly due to the potential of amine borane adducts for hydrogen storage as well as in the context of development of new functional inorganic materials.2 However, compared to formation of isoelectronic C-C bonds, the synthetic potential of B-N bond formation and B-N compounds in general are much less well investigated. Amine boranes are excellent precursors for the synthesis of new B-N materials. In our group we are working on transition metal complex catalysed dehydrocoupling of amine borane adducts such as ammonia borane and its substituted and functionalised analogues as well as hydrazine borane for the synthesis of new oligomeric and polymeric B-N materials.3

Scheme 1
A poly(methylaminoborane) sample.

Transition metal catalysts used in this context are based on PCP and PNP pincer ligand motifs, which are developed in the group and studied with respect to ligand effects and their coordination chemistry.4

The group is equipped for working under inert conditions (high vacuum Schlenk lines and two MBraun Labmaster gloveboxes) and holds electrochemical tools (Metrohm), three volumetric systems (Messen Nord, automatic gas burets), that can operate under photochemical conditions, as well as permanent gas GC.

Students with special interest in synthetic organometallic chemistry, ligand design and homogeneous catalysis are welcome to discuss opportunities to pursue lab practical training, bachelor or master thesis or PhD studies and are encouraged to contact torsten.beweries{at}


a) M. Kessler, S. Schüler, D. Hollmann, M. Klahn, T. Beweries, A. Spannenberg, A. Brückner, U. Rosenthal, Angew. Chem. Int. Ed. 2012, 51, 6272. b) S. Hansen, M.-M. Pohl, M. Klahn, A. Spannenberg, T. Beweries, ChemSusChem 2013, 6, 92. c) C. Godemann, L. Dura, D. Hollmann, K. Grabow, U. Bentrup, H. Kiao, A. Schulz, A. Brückner, T. Beweries, Chem. Commun. 2015, 51, 3065. d) L. Dura, J. Ahrens, S. Höfler, M.-M. Pohl, M. Bröring, T. Beweries, Chem. Eur. J. 2015, 21, 13549.  e) C. Godemann, D. Hollmann, M. Kessler, H. Jiao, A. Spannenberg, A. Brückner, T. Beweries, J. Am. Chem. Soc. 2016, 137, 16187.


D. Han, F. Anke, M. Trose, T. Beweries, Coord. Chem. Rev. 2019, 380, 260-286


a) T. Beweries, S. Hansen, M. Kessler, M. Klahn, U. Rosenthal, Dalton Trans. 2011, 40, 7689; b) M. Klahn, D. Hollmann, A. Spannenberg, A. Brückner, T. Beweries, Dalton Trans. 2015, 44, 12103; c) D. Han, M. Joksch, M. Klahn, A. Spannenberg, H.-J. Drexler, W. Baumann, H. Jiao, R. Knitsch, M. R. Hansen, H. Eckert, T. Beweries, Dalton Trans. 2016, 45, 17697; d) F. Anke, D. Han, M. Klahn, A. Spannenberg, T. Beweries, Dalton Trans. 2017, 46, 6843; e) M. Trose, M. Reiß, F. Reiß, F. Anke, A. Spannenberg, S. Boye, A. Lederer, P. Arndt, T. Beweries, Dalton Trans. 2018, 47, 12858.

[4]a) P. Hasche, M. Joksch, G. Vlachopoulou, H. Agarwala, A. Spannenberg, T. Beweries, Eur. J. Inorg. Chem. 2018, 676; b) G. Vlahopoulou, S. Möller, J. Haak, P. Hasche, H. J. Drexler, D. Heller, T. Beweries, Chem. Commun. 2018, 54, 6292.