Publications - Prof. Evgenii Kondratenko

112.Reining S, Kondratenko EV, Kalevaru VN, and Martin A. DGMK-Tagungsbericht, 2014, 3, 51-56. Reaction Pathways in the Palladium-catalyzed Acetoxylation of Toluene.
111.Sokolov S, Stoyanova M, Rodemerck U, Linke D, Kondratenko EV. CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4, 1323-1332. Effect of support on selectivity and on-stream stability of surface VOx species in non-oxidative propane dehydrogenation.
110.Rodemerck U, Kondratenko E.V., Fait M.J.G. , Sokolov S. , Linke D., in Modern Applications of High Throughput R&D in Heterogeneous Catalysis (Eds. A. Hagemeyer and A. F. Volpe), 2014, e-book Bentham Science Publishers , chapter 7, p. 254-283,  
“Application of parallel characterization methods in high-throughput catalyst preparation and development in: Modern Applications of High Throughput R&D in Heterogeneous Catalysis”
109.Morgan K, Goguet A, Hardacre C, Kondratenko EV, McManus C, and Shekhtman SO. CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4, 3665-3671. Expansion of pulse responses from temporal analysis of products (TAP) for more accurate data analysis.
108.Kondratenko VA, Berger-Karin C, and Kondratenko EV. ACS CATALYSIS, 2014, 4, 3136-3144. Partial Oxidation of Methane to Syngas Over γ-Al2O3-Supported Rh Nanoparticles: Kinetic and Mechanistic Origins of Size Effect on Selectivity and Activity.
107.Karimova U, Kasimov AA, Rodemerck U, Kondratenko VA, Sokolov S, Linke D, and Kondratenko EV. DGMK-Tagungsbericht, 2014, 3, 237-242. Partial oxidation of methane to synthesis gas over supported well-defined Pt, Rh, and Ru nanoparticles: activity, selectivity, and reaction mechanism.
106.Ibragimov H.J., Ibragimova Z.M., Gasimova K.M., Gasimova G.F., Kolchikova I.V., Kondratenko E.V., Journal of Advances in Chemistry, 10 (2014) 2610-2616
”The New Method of Obtaining High Quality Coke from Heavy Pyrolysis Resin“
105.Hahn T, Kondratenko EV, Linke D. CHEMICAL COMMUNICATIONS, 2014, 50, 9060-9063. The effect of supported MoOX structures on the reaction pathways of propene formation in the metathesis of ethylene and 2-butene.
104.Hahn T, Bentrup U, Armbruester M, Kondratenko EV, Linke D. CHEMCATCHEM, 2014, 6, 1664-1672. The Enhancing Effect of Brønsted Acidity of Supported MoOx Species on their Activity and Selectivity in Ethylene/trans-2-Butene Metathesis.
103.Brückner A., Kondratenko E.V., Kondratenko V., Radnik J. and Schneider M.; in Handbook of Advanced Methods and Processes in Oxidation Catalysis. From Laboratory to Industry. (Eds. D. Duprez, F. Cavani), World Scientific, 2014, ISBN: 978-1-84816-750-6. “In Situ Non-Vibrational Characterization Techniques to Analyse Oxidation Catalysts and Mechanisms”
102.Albrecht M, Rodemerck U, and Kondratenko EV. DGMK-Tagungsbericht, 2014, 3, 229-235. Improving production of higher hydrocarbons from methane through its oxidative coupling combined with hydrogenation of carbon oxides.
101.Albrecht M, Rodemerck U, and Kondratenko EV. CHEMIE INGENIEUR TECHNIK, 2014, 86, 1894-1900. Higher Hydrocarbon Production through Oxidative Coupling of Methane Combined with Hydrogenation of Carbon Oxides.
100.Ahlers SJ, Bentrup U, Linke D, and Kondratenko EV. CHEMSUSCHEM, 2014, 7, 2631-2639. An Innovative Approach for Highly Selective Direct Conversion of CO2 into Propanol using C2H4 and H2.
99.Kondratenko EV TOPICS IN CATALYSIS 2013, 56, 858-866. From Mechanistic and Kinetic Understanding of Heterogeneously Catalyzed Reactions to Tuning Catalysts Performance.
98.Kondratenko EV, Amrute AP, Pohl MM, Steinfeldt N, Mondelli C, Pérez-Ramírez J Catalysis Science & Technology 2013, 3, 2555-2558. Superior Activity of Rutile-Supported Ruthenium Nanoparticles for HCl Oxidation.
97.Kondratenko EV, Mul G, Baltrusaitis J, Larrazabal GO, Perez-Ramirez J ENERGY & ENVIRONMENTAL SCIENCE 2013, 6, 3112-3135. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes.
96.Kondratenko EV, Rodemerck U CHEMCATCHEM 2013, 5, 697-700. A Dual-Reactor Concept for the High-Yielding Conversion of Methane into Higher Hydrocarbons.
95.Matam SK, Kondratenko EV, Aguirre MH, Hug P, Rentsch D, Winkler A, Weidenkaff A, Ferri D APPLIED CATALYSIS B: ENVIRONMENTAL 2013, 129, 214 – 224. The Impact of Aging Environment on the Evolution of Al2O3 Supported Pt Nanoparticles and their NO Oxidation Activity.
94.Schaeffer J, Kondratenko VA, Steinfeldt N, Sebek M, Kondratenko EV JOURNAL OF CATALYSIS 2013, 301, 210-216. Highly Selective Ammonia Oxidation to Nitric Oxide over Supported Pt Nanoparticles.
93.Sokolov S, Kondratenko EV, Pohl M-M, Rodemerck U INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2013, 38, 16121-16132. Effect of calcination conditions on time on-stream performance of Ni/La2O3–ZrO2 in low-temperature dry reforming of methane.
92.S. N. Vereshchagin, E. V. Kondratenko, E. V. Rabchevskii, N. N. Anshits, L. A. Solovev, A. G.  Anshits Kinetics and Catalysis 2012, 53, 449-455. New Approach to the Preparation of Catalysts for the Oxidative Coupling of Methane.
91.S. Sokolov , M. Stoyanova, U. Rodemerck, D. Linke, E. V. Kondratenko Journal of Catalysis 2012, 293, 67-75. Comparative Study of Propane Dehydrogenation over V-, Cr-, and Pt-Based Catalysts: Time On-Stream Behavior and Origins of Deactivation.
90.S. Sokolov, E. V. Kondratenko, M. M. Pohl, A. Barkschat, U. Rodemerck Applied Catalysis B: Environmental 2012, 113-114, 19-30. .Stable Low-Temperature dry Reforming of Methane over Mesoporous La2O3-ZrO2 Supported Ni Catalyst.
89.O. Ovsitser, R. Schomaecker, E. V. Kondratenko, T. Wolfram, A. Trunschke Catalysis Today 2012, 192, 16-19. Highly Selective and Stable Propane Dehydrogenation to Propene over Dispersed VOx-Species under Oxygen-Free and Oxygen-Lean Conditions.
88.K. Langfeld, B. Frank, V. E. Strempel, C. Berger-Karin, G. Weinberg, E. V. Kondratenko, R. Schomaecker Applied Catalysis A: General 2012, 417-418, 145-152. Comparison of Oxidizing Agents for the Oxidative Coupling of Methane over State-of-the-Art Catalysts.
87.V. A. Kondratenko, T. Hahn, E. V. Kondratenko ChemCatChem 2012, 4, 408-414. Catalytic Abatement of Nitrous Oxide Coupled with Functionalization of C1-C3 Alkanes.
86.C. Berger-Karin, M. Sebek, M. M. Pohl, U. Bentrup, V. A. Kondratenko, N. Steinfeldt, E. V. Kondratenko  ChemCatChem 2012, 4, 1368-1375. Tailored Noble Metal Nanoparticles on γ-Al2O3 for High Temperature CH4 Conversion to Syngas.
85.C. Berger-Karin, S. Wohlrab, U. Rodemerck, E. V. Kondratenko Catalysis Communications 2012, 18, 121-125. The Tremendous Effect of Trace Amounts of Rh on Redox and Catalytic Properties of CeO2-TiO2 and Al2O3 in CH4 Partial Oxidation.
84.A. Simon, E. V. Kondratenko, Applied Catalysis A: General 2011, 392, 199-207. Investigation of the Electrical and Catalytic Properties of Materials with Csx(Mo, Nb)5O14 Compositon.
83.O. Schulz, N. Eisenreich, H. Fietzek, B. Eickershoff, M. Schneider, E. V. Kondratenko Zeitschrift für Kristallographie – New Crystal Structures  2011, 1, 367-372. Structural Changes during the Oxidation of Micrometer-Sized Al Particles up to 1523 K in Air.
82.O. Schulz, N. Eisenreich, S. Kelzenberg, H. Schuppler, J. Neutz, E. V. Kondratenko Thermochimica Acta 2011, 517, 98-104. Non-isothermal and isothermal Kinetics of High Temperature Oxidation of Micrometer-Sized Titanium Particles in Air.
81.M. Santiago, V. A. Kondratenko, E. V. Kondratenko, N. Lopez, J. Perez-Ramirez Applied Catalysis B: Environmental 2011, 110, 33-39. Mechanistic Analysis of Direct N2O Decomposition and Reduction with H2 or NH3 over RuO2.
80.K. Langfeld, E. V. Kondratenko, O. Goerke, R. Schomaecker Catalysis Letters 2011, 141, 772-778. Microemulsion-Aided Synthesis of Nanosized Perovskite-Type SrCoOx Catalysts.
79.E. V. Kondratenko, Y. Sakamoto, K. Okumura, Shinjoh Catalysis Today 2011, 164, 46-51. Time-Resolved in Situ UV/Vis Spectroscopy for Analyzing the Dynamics of Surface and Bulk Redox Processes in Materials Used as Oxygen Storage Capacitors.
78.E. V. Kondratenko, D. Linke in Chemie über den Wolken … und darunter edited by Zellner R, WILEY-VCH, Weinheim, 2011, 71-75. Many things begin with methane.
77.E. V. Kondratenko, M. Baerns, RSC Nanoscience & Nanotechnology 2011, 19, 35-55. Catalysis of Oxidative Methane Conversions.
76.E. V. Kondratenko, RSC Nanoscience & Nanotechnology 2011, 19, 340-354. Mechanistic Aspects of Short Contact Time Oxidative Functionalization of Propane and Ethane from Temporal Analysis of Products.
75.C. Berger-Karin, J. Radnik, E. V. Kondratenko, Journal of Catalysis 2011, 280, 116-124. Mechanistic Origins of the Promoting Effect of Tiny Amounts of Rh on the Performance of NiOx/Al2O3 in Partial Oxidation of Methane.
74.

C. Berger-Karin, E. V. Kondratenko in Studies Surface Science and Catalysis, Editors: E. M. Gaigneaux, M. Devillers, S. Hermans, P. Jacobs, J. Martens and P. Ruiz, B.V. Elsevier, 2010, 175, 635-638. Cellulose-templated Materials for Partial Oxidation of Methane: Effect of Template and Calcination Parameters on Catalytic Peformance.

73.

V. Goelden, S. Sokolov, V. A. Kondratenko, E. V. Kondratenko, Applied Catalysis B: Environmental 2010, 101, 130-136. Effect of the Preparation Method on High-Temperature de-N2O Performance of Na-CaO Catalysts. A Mechanistic Study.

72.

J. Hohmeyer, E. V. Kondratenko, M. Bron, J. Kraehnert, F. C. Jentoft, R. Schloegl, P. Claus,  Journal of Catalysis 2010, 269, 5-14. Activation of Dihydrogen on Supported and Unsupported Silver Catalysts.

71.

E. V. Kondratenko, V. Goelden, S. Sokolov, Chemcatchem 2010, 2, 633-635. Enhanced de-N2O Performance of Cellulose-Templated CaO-Based Catalysts.

70.

E. V. Kondratenko, Catalysis Today 2010, 157, 16-23. Using Time-Resolved Methods to Monitor and Understand Catalytic Oxidation Reactions.

69.E. V. Kondratenko, V. A. Kondratenko, M. Santiago, J. Perez-Ramirez, Applied Catalysis B: Environmental  2010, 99,  66-73. Mechanism and Micro-Kinetics of Direct N2O Decomposition over BaFeAl11O19 Hexaaluminate and Comparison with Fe-MFI zeolites.
68.V. A. Kondratenko, G. Weinberg, M. M. Pohl MM, D. S. Su, Applied Catalysis A: General 2010, 381, 66-73. Mechanistic Aspects of the Andrussow Process over Pt-Rh Gauzes. Effect of Gauze Morphology and Oxygen Coverage on Promary O2-NH3-CH4 interactions.
67.

V. A. Kondratenko, Applied Catalysis A: General 2010, 381, 74-82. Mechanistic Aspects of the Andrussow Process over Pt-Rh Gauzes. Pathways of Formation and Consumption of HCN.

66.

O. Ovsitser, E. V. Kondratenko, Chemical Communications 2010, 46, 4974-4976. Selective and Stable Iso-Butene Production over Highly Dispersed VOx Species on SiO2 Supports Via Combined Oxidative and Non-Oxidative Iso-Butane Dehydrogenation.

65.

J. Perez-Ramirez, N. Lopez, E. V. Kondratenko, Journal of Physical Chemistry C  2010, 114, 16660-16668. Pressure and Materials Effects on the Selectivity of RuO2 in NH3 Oxidation.

64.

A. Simon, E. V. Kondratenko, Chemistry – A European Journal 2010, 16, 1765-1767. The “Flash” Method: A Shortcut for Producing the CsX(W,Nb)5O14 Structure.

63.

E. V. Kondratenko, A. Brueckner, Journal of Catalysis 2010, 274, 111-116. On the Nature and Reactivity of Active Oxygen Species Formed from O2 and N2O on V0x/MCM-41 Used for Oxidative Dehydrogenation of Propane.

62.

K. Langfeld, O. Goerke, E. V. Kondratenko, R. Schomaecker R DGMK-Tagungsbericht - Production And Use Of Light Olefins, 2009, 171-178. Nanostructured Perovskite-type Catalysts for the Oxidative Coupling of Methane.

61.

J. Perez-Ramirez, E. V. Kondratenko, G. Novell-Leruth, J. M. Ricart, Journal of Catalysis 2009, 261, 217-223. Mechanism of Ammonia Oxidation over PGM (Pt, Pd, Rh) wires by Temporal Analysis of Products and Density Functional Theory.

60.

O. Ovsitser, E. V. Kondratenko, Catalysis Today 2009, 142, 138-142. Similiarity and Differences in the Oxidative Dehydrogenation of C2-C4-Alkanes over nano-sized VOx Species using N2O and O2.

59.

O. Ovsitser, M. Cherian, A. Brueckner, E. V. Kondratenko, Journal of Catalysis 2009, 265, 8-18. Dynamics of Redox behaviour of nano-sized VOx Species over Ti-Si-MCM-41 from time-resolved in situ UV/VIS Analysis.

58.

E. V. Kondratenko, H. Wang, V. A. Kondratenko, J. Caro,  Journal of Molecular Catalysis A: Chemical 2009, 297, 142-149. Selective Oxidation of CH4 and C2H6 over a Mixed Oxygen Ion and Electron Conducting Perovskite – A TAP and Membrane Reactors Study.

57.

E. V. Kondratenko, Y. Sakamoto, K. Okumura, H. Shinjoh, Applied Catalysis A: Environmental 2009, 89, 476-483. Transient Analysis of Oxygen Storage Capacity of Pt/CeO2-ZrO2 Materials with Millisecond- and Second-Time Resolution.

56.

M. J. G. Fait, R. Abdallah, D. Linke, E. V. Kondratenko, U. Rodemerck, Catalysis Today 2009, 142, 196-201. A Novel Multi-Channel Reactor System Combined with Operando UV/VIS Diffuse Refelctance Spectroscopy: Proof of Principle.

55.

E. Berrier, O. Ovsitser, E. V. Kondratenko, M. Schwidder, W. Grünert and A. Brückner, Journal of Catalysis 2007, accepted. Temperature-dependent N2O decomposition over Fe-ZSM-5: Identification of sites with different activity.

54.

O. Ovsitser, M. Cherian, E.V. Kondratenko, J.Phys.Chem.C 2007, in press. In-situ UV/Vis and transient isotopic analysis of the role of oxidizing agent in the oxidative dehydrogenation of propane over silica supported vanadia catalysts.

53.

E.V. Kondratenko, M.Yu. Sinev, Applied Catalysis A 2007, in press. Effect of nature and surface density of oxygen species on product distribution in the oxidative dehydrogenation of propane over oxide catalysts.

52.

B. Frank, A. Dinse, O. Ovsitser, E. V. Kondratenko, R. Schomäcker, Applied Catalysis A 2007, 323, 66-76. Mass and heat transfer effects on the oxidative dehydrogenation of propane (ODP) over a low loaded VOx/Al2O3 catalyst.

51.

E.V. Kondratenko , O. Ovsitser, J. Radnik, M. Schneider, R. Kraehnert, U. Dingerdissen, Applied Catalysis A 2007, 319, 98-110. Influence of reaction conditions on catalyst composition and selective/non-selective reaction pathways of the ODP reaction over V2O3, VO2 and V2O5 with O2 and N2O.

50.

J. Pérez-Ramírez, and E.V. Kondratenko, Catalysis Today 2007, 121, 160-169. Evolution, achievements, and perspectives of the TAP technique.

49.

E.V. Kondratenko, J. Pérez-Ramírez, Editorial, Catalysis Today 2007, 121, 159.

48.

E.V. Kondratenko, J. Pérez-Ramírez, Catalysis Today 2007, 121, 197-203. Micro-kinetic analysis of direct N2O decomposition over steam-activated Fe-silicalite from transient experiments in the TAP reactor.

47.

E.V. Kondratenko, J. Pérez-Ramírez, Catalysis Today 2007, 119, 243-246. Mechanistic peculiarities of N2O reduction by CH4 over Fe-silicalite.

46.

E.V. Kondratenko, J. Pérez-Ramírez, J.Phys.Chem B 2006, 110(45), 22586-22595. Mechanism and Kinetics of Direct N2O Decomposition over Fe-MFI Zeolites with Different Iron Speciation from Temporal Analysis of Products.

45.

E.V. Kondratenko, J. Pérez-Ramírez, Applied Catalysis B 2006, 64, 35-41. Importance of the lifetime of oxygen species generated by N2O decomposition for hydrocarbon activation over Fe-silicalite.

44.

E.V. Kondratenko, N. Steinfeldt, M. Baerns, Physical Chemistry Chemical Physics 2006, 8, 1624–1633, Transient and steady-state investigation of selective and non-selective reaction pathways in the oxidative dehydrogenation of propane over supported vanadia catalysts.

43.

E.V. Kondratenko, V.A. Kondratenko, M. Richter, R. Fricke, Journal of Catalysis 2006, 239, 23-33. Influence of O2 and H2 on NO reduction by NH3 over Ag/Al2O3:A transient isotopic approach.

42.

E.V. Kondratenko, R. Kraehnert, J. Radnick, M. Baerns and J. Pérez-Ramírez, Applied Catalysis A 2006, 298, 73-79. Distinct activity and time-on-stream behavior of pure Pt and Rh metals and Pt-Rh alloys in the high-temperature N2O decomposition.

41.

E.V. Kondratenko, M. Cherian, M. Baerns, Catalysis Today 2006, 122, 60-63. Oxidative dehydrogenation of propane over differently structured vanadia-based catalysts in the presence of O2 and N2O,

40.

A. Brückner and E. Kondratenko, Catalysis Today 2006, 113, 16-24. Simultaneous operando EPR/UV-vis/laser-Raman spectroscopy - A powerful tool for monitoring transition metal oxide catalysts during reaction.

39.

N. Dropka, K. Jähnisch, E.V. Kondratenko, V. Kondratenko, R. Kraehnert, N. Steinfeldt, D. Wolf, M. Baerns, International Journal of Chemical Reactor Engineering 2005, 3. Innovative reactors for determining kinetics of highly exothermic heterogeneous catalytic reactions.

38.

E.V. Kondratenko, M. Cherian, M. Baerns, D. Su and R. Schlög, X. Wang, I. E. Wachs, Journal of Catalysis 2005, 234, 131-142. The oxidative dehydrogenation of propane over V-MCM-41 catalysts: Comparison of O2 and N2O oxidants.

37.

J. Pérez-Ramírez, E.V. Kondratenko, N. Debbagh, Journal of Catalysis 2005, 233, 442-452. Transient studies on the mechanism of N2O activation and reaction with CO and C3H8 over Fe-silicalite.

36.

E.V. Kondratenko, J. Pérez-Ramírez, Applied Catalysis, A 2005, 289, 97-103. Transient studies on the effect of oxygen on the high-temperature NO reduction with NH3 over Pt-Rh gauze.

35.

E.V. Kondratenko, M. Cherian, M. Baerns, Catalysis Today 2005, 99, 59. Mechanistic Aspects of the Oxidative Dehydrogenation of Propane over an Alumina-Supported V-Cr-Mn-W-Ox Mixed Oxide Catalyst.

34.

J. Pérez-Ramírez, E.V. Kondratenko, V.A. Kondratenko, M. Baerns, Journal of Catalysis 2005, 229, 303–313. Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: secondary interactions of NH3 and NO.

33.

A. I. Bostan, Yu. I. Pyatnitskii, E. V. Kondratenko, Theoretical and Experimental Chemistry 2004, 40 (5), 326-330. Mechanism of Separate Interaction of Oxygen and Methane with the Perovskite Catalyst SrCoO3-x Modified by Alkali Metals.

32.

J. Pérez-Ramírez, E.V. Kondratenko, V.A. Kondratenko, M. Baerns, Journal of Catalysis 2004, 227, 90–100. Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: Primary interactions of NH3 and O2.

31.

N. Magg, B. Immaraporn, J. B. Giorgia, T. Schroeder, M. Bäumer, J. Döbler, Z. Wu, E.V. Kondratenko, M. Cherian, M. Baerns, P. C. Stair, J. Sauer, H.-J. Freund, Journal of Catalysis 2004, 226, 88-100. Vibrational Spectra of Alumina- and Silica-Supported Vanadia Model Catalysts: Experiment and Theory.

30.

E.V. Kondratenko, J. Pérez-Ramírez, Applied Catalysis A: General 2004, 267, 181-189. Oxidative functionalization of propane over FeMFI zeolites. Effect of reaction variables and catalyst constitution on the mechanism and performance.

29.

M. Bron, E.V. Kondratenko, A. Trunschke, P.Claus, Zeitschrift für Physikalische Chemie 2004, 218, 405–423. Towards the “Pressure and Materials Gap”: Hydrogenation of Acrolein Using Silver Catalysts.

28.

J. Pérez-Ramírez and E.V. Kondratenko, Chemical Communications, 2004, 376. Evidences of the origin of N2O in the high-temperature NH3 oxidation over Pt-Rh gauze.

27.

M. Baerns, G. Grubert, E.V. Kondratenko, D. Linke, U. Rodemerk, Oil Gas European Magazine 2003, 1, 36-43. Alkanes as substitutes for Alkenes in the Manufacture of Petrochemicals – A continuing challenge in the present and the future.

26.

E.V. Kondratenko, J. Pérez-Ramírez, Catalysis Letters 2003, 91, 211-216. Transient studies of direct N2O decomposition over Pt-Rh gauze catalyst. Mechanistic and kinetic aspects of oxygen formation.

25.

J. Pérez-Ramírez, E.V. Kondratenko, Chemical Communications 2003, 2152-2153. Steam-activated FeMFI as highly efficient catalysts for propane and N2O valorisation via oxidative conversions.

24.

G. Grubert, E.V. Kondratenko, S. Kolf, M. Baerns, P. van Geem and R. Parton, Catalysis Today 2003, 81, 337-345. Fundamental insights into the oxidative dehydrogenation of ethane to ethylene over catalytic materials discovered by an evolutionary approach.

23.

E. V. Kondratenko and M. Baerns, “Synthesis Gas Generation by Heterogeneous Catalysts”, Encyclopedia of Catalysis, I. Horvath (Ed.), John Wiley and Sons, 2003, vol.6, 424-456.

22.

M. Baerns, O.V. Buyevskaya, A. Brückner, R. Jentzsch, E.V. Kondratenko, M. Langpape, D. Wolf, Studies in Surface Science and Catalysis V. 2001, 140, 55-65. Search and optimisation of multi-metal-oxide catalysts for the oxidative dehydrogenation of propane – A combinatorial and fundamental approach.

21.

E.V. Kondratenko and M. Baerns, Applied Catalysis 2001, A: General 222, 133-143. Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O: on the role of vanadia distribution and oxidant activation.

20.

E.V. Kondratenko, O.V. Buyevskaya, M. Baerns, Topics in Catalysis 2001, 15, 175-180. Characterisation of Vanadium-Oxide-Based Catalysts for the Oxidative Dehydrogenation of Propane to Propene.

19.

O.V. Buyevskaya, A. Brückner, E.V. Kondratenko, D. Wolf, M. Baerns, Catalysis Today 2001, 67, 369-378. Fundamental and Combinatorial Approaches in the Search for and Optimisation of Catalytic Materials for the Oxidative Dehydrogenation of Propane to Propene.

18.

A.G. Anshits, E.V. Kondratenko, E.V. Fomenko, A.M.Kovalev, O.A. Bajukov, A.N. Salanov, Studies in Surface Science and Catalysis 2000, 130 D, 3789-3794. Catalytic properties of active phase of glass crystal microspheres in the reaction of methane oxidation.

17.

A.G. Anshits, E.V. Kondratenko, E.V. Fomenko, A.M. Kovalev, O.A. Bajukov, N.N. Anshits, E.V. Sokol, D.I. Kochubey, A.I. Boronin, A.N. Salanov, S.V. Koshcheev, Journal of Molecular Catalysis A: Chemical 2000, 158, 209-214. Physicochemical and catalytic properties of glass crystal catalysts for the oxidation of methane.

16.

E.V. Kondratenko, O. Buyevskaya, M. Baerns, Journal of Molecular Catalysis A: Chemical 2000, 158, 199-208. Mechanistic insights in the activation of oxygen on oxide catalysts for the oxidative dehydrogenation of ethane from pulse experiments and contact potential difference measurements.

12.M. Stoyanova, E. Kondratenko, S. Sokolov, U. Rodemerck, D. Linke, T. Otroshchenko; Verfahren zur Herstellung von Olefinen sowie Katalysator; DE 102015112612.5 (31.07.2015)
11.M. Stoyanova, E. Kondratenko, D. Linke, E. Ernst, R. Dicke; Process for obtaining Olefins by Metathesis; EP 14150042.1 (02.01.2014)
10.M. Stoyanova, E. Kondratenko, D. Linke, E. Ernst, R. Dicke; Process for Olefin production by Metathesis and reactor System therefor; EP13198981.6 (20.12.2013)
09.

E. Ernst, D. Linke, M. Stoyanova, E. Kondratenko; Catalyst bed configuration for olefin conversion and process for obtaining olefins; EP 13192901.0 (14.11.2013)
08.

M. Stoyanova, E. Kondratenko, D. Linke, E. Ernst; Catalyst and process for Olefin Metathesis reaction; EP 13188709.3 (15.10.2013)
07.

 E. Ernst, M. Stoyanova, E. Kondratenko, D. Linke; Process for Olefin production by Metathesis and reactor System therefore; EP 13184369.0 (13.09.2013)

06.

E. Ernst, M. Stoyanova, E. Kondratenko, D. Linke; Improved catalyst bed configuration for olefin production; EP 13177610.6 (23.07.2013)
05.E. Kondratenko, U. Rodemerck; Verfahren und Katalysator zur Herstellung von längerkettigen Kohlenwasserstoffen aus Methan; DE 102012215723.9 (05.09.2012)
04.S. Sokolov, U. Rodemerck, E. Kondratenko, M. Stoyanova, D. Linke; Verfahren zur Herstellung von Olefinen sowie Katalysatoren; DE 102012206543.1 (20.04.2012)
03.O. Ovsiter, E. Kondratenko; Verfahren zur Herstellung von Olefinen sowie Katalysator; DE 102010001910.0 (10.02.2010)
02.

E. Kondratenko, O. Ovsitser, U. Dingerdissen; Verfahren zur katalytischen N↓2↓O-Reduktion mit gleichzeitiger Gewinnung von Wasserstoff und leichten Alkenen; DE 102007034284.7 (20.07.2007)

01.

U. Rodemerck, E. Kondratenko, D. Linke; Process for preparaing silicoaluminophosphate (SAPO) molecular sieves, catalysts containing said sieves and catalytic dehydration processes using said catalyst; EP 07013300.4 (06.07.2007