

The nature of adsorbed oxygen species determines the product selectivity in the oxidative coupling of  $CH_4$  as shown on the cover. In their Communication (e202319192), Guiyuan Jiang, Evgenii V. Kondratenko et al. describe how the formation of carbon oxides and ethane correlates with the binding strength of selective mono-atomic oxygen species. The strength affects the probability of their recombination to diatomic oxygen species oxidizing methane to carbon oxides. Cover image credit: Vita A. Kondratenko.

WILEY. VCH



Angewandte Chemie

Check for updates

www.angewandte.org

How to cite: Angew. Chem. Int. Ed. 2024, e202319192 doi.org/10.1002/anie.202319192

# Fundamentals of Unanticipated Efficiency of Gd<sub>2</sub>O<sub>3</sub>-based Catalysts in Oxidative Coupling of Methane

Kai Wu, Anna Zanina, Vita A. Kondratenko, Lin Xu, Jianshu Li, Juan Chen, Henrik Lund, Stephan Bartling, Yuming Li, Guiyuan Jiang,\* and Evgenii V. Kondratenko\*

**Abstract:** Improving the selectivity in the oxidative coupling of methane to ethane/ethylene poses a significant challenge for commercialization. The required improvements are hampered by the uncertainties associated with the reaction mechanism due to its complexity. Herein, we report about 90% selectivity to the target products at 11% methane conversion over  $Gd_2O_3$ -based catalysts at 700°C using N<sub>2</sub>O as the oxidant. Sophisticated kinetic studies have suggested the nature of adsorbed oxygen species and their binding strength as key parameters for undesired methane oxidation to carbon oxides. These descriptors can be controlled by a metal oxide promoter for  $Gd_2O_3$ .

**D**ue to recent discoveries of natural/shale gas resources, the conversion of methane to ethane and ethylene (C<sub>2</sub>hydrocarbons), oxidative coupling of methane (OCM), has gained new research interest.<sup>[1]</sup> The use of O<sub>2</sub> as an oxidant makes this reaction more thermodynamically feasible. However, C<sub>2</sub>-hydrocarbons are prone to oxidation to carbon oxides. Hindering these side reactions is a priority for OCM commercialization. The Mn/Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> system, one of the promising OCM catalysts, shows reasonable selectivity above 800 °C.<sup>[2]</sup> Catalysts based on oxides of lanthanides are also promising for OCM.<sup>[3-6]</sup> La<sub>2</sub>O<sub>3</sub>,<sup>[7]</sup> Sm<sub>2</sub>O<sub>3</sub><sup>[8]</sup> or Nd<sub>2</sub>O<sub>3</sub><sup>[9]</sup> can activate CH<sub>4</sub> below 700 °C but have low selectivity to the desired products.

To control product selectivity,  $N_2O$ ,  $CO_2$ , or  $S_2$  have been used instead of  $O_2$ .<sup>[10]</sup>  $N_2O$  improved  $C_2$ -hydrocarbons

[\*] K. Wu, L. Xu, J. Li, J. Chen, Dr. Y. Li, Prof. Dr. G. Jiang State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing, 102249, (China) E-mail: jianggy@cup.edu.cn
K. Wu, Dr. A. Zanina, Dr. V. A. Kondratenko, L. Xu, Dr. H. Lund, Dr. S. Bartling, Prof. Dr. E. V. Kondratenko
Department of Advanced methods for applied catalysis Leibniz-Institut für Katalyse e.V.
Albert-Einstein-Str. 29a, 18059 Rostock (Germany)
E-mail: Evgenii.Kondratenko@catalysis.de

© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made. selectivity over various catalysts above 750 °C.<sup>[11-13]</sup> Sm<sub>2</sub>O<sub>3</sub> was the only rare earth oxide tested in OCM with N2O (N<sub>2</sub>O–OCM), but showed low selectivity.<sup>[14]</sup> The use of N<sub>2</sub>O is advantageous from an environmental point of view, as the global warming potential of this compound is about 300 and 10 times higher than that of CO<sub>2</sub> and CH<sub>4</sub> respectively. One disadvantage of using N<sub>2</sub>O as oxidant is its price. N<sub>2</sub>O is, however, formed in large quantities as a by-product in the production of adipic acid,<sup>[15]</sup> and can also be produced by the direct oxidation of NH<sub>3</sub>,<sup>[16]</sup> which may become the basis for low-cost N<sub>2</sub>O production in the future. Motivated by these considerations, we introduce Gd<sub>2</sub>O<sub>3</sub>-based materials as a promising N<sub>2</sub>O–OCM system that is highly selective at 650–700 °C. Kinetic tests revealed how the overall pathways of the formation of C<sub>2</sub>-hydrocarbons and carbon oxides are affected by O<sub>2</sub> and N<sub>2</sub>O. Temporal analyses of products enabled us to understand the role of promoter for Gd<sub>2</sub>O<sub>3</sub> and type of oxygen species in the efficient conversion of CH<sub>4</sub> to the target products.

Oxides of Eu, Nd, Er, La, Gd, Ho, Dy or Sm were tested in  $O_{2^-}$ , and  $N_2O$ –OCM at 750 °C (Figure 1). The selectivity to  $C_{2+}$ -hydrocarbons ( $C_2$ – $C_3$  hydrocarbons) increased when  $O_2$  was replaced by  $N_2O$ . The yield was almost unchanged over Sm<sub>2</sub>O<sub>3</sub> and Dy<sub>2</sub>O<sub>3</sub>, decreased over Eu<sub>2</sub>O<sub>3</sub> and Nd<sub>2</sub>O<sub>3</sub> but increased over Ho<sub>2</sub>O<sub>3</sub>, La<sub>2</sub>O<sub>3</sub>, Er<sub>2</sub>O<sub>3</sub> and Gd<sub>2</sub>O<sub>3</sub> (to the highest extent). Gd<sub>2</sub>O<sub>3</sub> was rarely used in OCM studies probably due to its low performance.<sup>[6,17]</sup> Ng and coworkers<sup>[17]</sup> reported about 54 % selectivity to C<sub>2+</sub>-hydrocarbons at 32 % CH<sub>4</sub> conversion over Gd<sub>2</sub>O<sub>3</sub> modified with BaO in O<sub>2</sub>–OCM at 750 °C.

Inspired by the positive effects of Na, Sr and Ba promoters on the C2-hydrocarbons selectivity of various catalysts,<sup>[4]</sup> we modified Gd<sub>2</sub>O<sub>3</sub> accordingly. The catalysts with 10 wt % promoter (0.1NaGd, 0.1SrGd and 0.1BaGd) consisted of the cubic Gd<sub>2</sub>O<sub>3</sub> phase (Figure S1a). Ba and Sr were identified as carbonates. No Na-containing phase was detected. In situ and ex situ X-ray diffraction analysis of 0.1BaGd in O<sub>2</sub>-OCM and N<sub>2</sub>O-OCM revealed no change in phase composition (Figures S1b,c). Pseudo in situ X-ray photoelectron spectroscopy (XPS) tests also showed no obvious effect of the reaction feed on the catalyst surface composition. There are, however, some differences in the XP spectra of Gd<sub>2</sub>O<sub>3</sub> and 0.1BaGd (Figures S1d-i). The XP C 1s spectrum of 01.BaGd is characterized by a signal at about 289 eV, which can be assigned to carbonates, probably barium carbonates in agreement with XRD data. The promoter should also be responsible for the presence of a signal at about 531 eV in the XP O1s spectrum.

Angew. Chem. Int. Ed. 2024, e202319192 (1 of 6)

### **Communications**



*Figure 1.* Results of OCM screening tests over (a) rare earth metal oxides or (b, c)  $Gd_2O_3$ -based catalysts with (a, b)  $O_2$  (blue symbols) and (a, c)  $N_2O$  (green symbols). Reaction conditions: 40vol% CH<sub>4</sub>, CH<sub>4</sub>/ $O_2$ =8, 750 °C, CH<sub>4</sub>/ $N_2O$ =4, contact time  $\tau$  is (a) 0.19 and (b, c) 0.047  $g_{cat}$ ·min·mmol<sub>CH4</sub><sup>-1</sup>.

The C<sub>2+</sub>-selectivity in O<sub>2</sub>–OCM over Gd<sub>2</sub>O<sub>3</sub>, 0.1NaGd, 0.1SrGd and 0.1BaGd at 650 °C is 33.6 %, 15.1 %, 30.8 %, and 22.6 %, respectively (Figure 1b, Table S1). When the temperature increased, the selectivity increased, too. Such a dependence is consistent with previous O<sub>2</sub>–OCM studies, which concluded that high temperatures are essential to achieve high C<sub>2+</sub>-selectivity.<sup>[1,2]</sup>

Compared with O<sub>2</sub>–OCM, N<sub>2</sub>O–OCM over 0.1BaGd reached the selectivity of 77 % at 0.44 % CH<sub>4</sub> conversion at 650 °C. The selectivity did not decrease even though the conversion increased to 7.5 % with increasing the reaction temperature to 800 °C (Figure 1c, Table S2). The selectivity of 0.1NaGd passed a maximum with increasing temperature while that of Gd<sub>2</sub>O<sub>3</sub> and 0.1SrGd increased. Since the strongest positive effect was observed for 0.1BaGd, we further focused on this system. N<sub>2</sub>O–OCM tests with BaCO<sub>3</sub> and BaO at 650 °C showed poor performance of these

materials (Figure S2), so, Ba must be a promoter for  $Gd_2O_3$ . To understand the role of this promoter, BaGd catalysts with different Ba loading were further prepared and tested in  $O_2$ -OCM and  $N_2O$ -OCM.

In O<sub>2</sub>–OCM at 700 °C, the rate of overall CH<sub>4</sub> consumption (r(CH<sub>4</sub>)) as well as the rates of CH<sub>4</sub> conversion to  $C_2H_6$  (r(C<sub>2</sub>H<sub>6</sub>)),  $C_2H_4$  (r(C<sub>2</sub>H<sub>4</sub>)), CO<sub>2</sub> (r(CO<sub>2</sub>)) and CO (r(CO)) decreased linearly with Ba loading (Figure 2a–c, Figure S3). Contrarily, an unexpected effect of Ba loading on these rates was observed in N<sub>2</sub>O–OCM. Although Ba addition reduced r(CH<sub>4</sub>) (Figure 2a), r(C<sub>2</sub>H<sub>6</sub>) followed a volcano-type dependence on the Ba/Gd ratio (Figure 2b). The r(C<sub>2</sub>H<sub>6</sub>) of all *x*BaGd was higher than that of Gd<sub>2</sub>O<sub>3</sub>. The r(C<sub>2</sub>)/r(CO<sub>x</sub>) ratio of *x*BaGd in O<sub>2</sub>–OCM is close to 1, but is significantly higher in N<sub>2</sub>O–OCM, reaching its highest value of about 9 for 0.1BaGd (Figure 2d). Increasing the Ba loading further has, however, a negative effect. Importantly,



**Figure 2.** Effects of Ba loading on (a)  $r(CH_4)$ , (b)  $r(C_2)$ , and (c)  $r(CO_x)$ . (d) The ratio of  $r(C_2)/r(CO_x)$  versus Ba/Gd in O<sub>2</sub>- or N<sub>2</sub>O–OCM. (e–h) Primary selectivity in O<sub>2</sub>- or N<sub>2</sub>O–OCM over Gd<sub>2</sub>O<sub>3</sub> and 0.1BaGd. Reaction conditions: 40vol% CH<sub>4</sub>, CH<sub>4</sub>/O<sub>2</sub>=8, CH<sub>4</sub>/N<sub>2</sub>O=4, 700 °C,  $\tau$  is 0.037  $g_{cat}$ ·min·mmol<sub>CH4</sub><sup>-1</sup> (O<sub>2</sub>–OCM) or 0.093  $g_{cat}$ ·min·mmol<sub>CH4</sub><sup>-1</sup> (N<sub>2</sub>O–OCM).

Angew. Chem. Int. Ed. 2024, e202319192 (2 of 6)

 $r(CO_2)$  and r(CO) decrease with Ba loading stronger in N<sub>2</sub>O–OCM than in O<sub>2</sub>–OCM (Figure S4).

The effects of  $O_2$  and  $N_2O$  on the reaction pathways to CO,  $CO_2$ ,  $C_2H_4$ , and  $C_2H_6$  were elucidated by analyzing the selectivity-conversion relationships obtained through varying the space velocity at 700 °C (Figure 2). To distinguish between primary (formed from  $CH_4$ ) and secondary (not formed from  $CH_4$ ) products, the selectivity to each product was extrapolated to zero  $CH_4$  conversion. The products with non-zero selectivity should be formed directly from  $CH_4$ , while those with a zero value are secondary products derived from primary products. Regardless of the oxidant, CO and  $C_2H_6$  are primarily products formed over 0.1BaGd or  $Gd_2O_3$  (Figure 2e–h). This is also true for  $CO_2$  formation in  $N_2O$ - and  $O_2$ -OCM over 0.1BaGd and in  $N_2O$ -OCM

Replacing  $O_2$  with  $N_2O$  decreased the primary selectivity to  $C_2H_6$  and CO over  $Gd_2O_3$  from 35 to 28% and from 65 to 27%, respectively, but increased the primary selectivity to  $CO_2$  from 0 to 35% (Figure 2e,f). Conversely, the primary selectivity to  $C_2H_6$  over 0.1BaGd increased from 39 to 83% (Figure 2g,h). This increase was accompanied by a decrease in the primary selectivity to CO and  $CO_2$  from 30 to 4.5% and from 31 to 12.5%, respectively. Thus, the modification of  $Gd_2O_3$  with Ba is pivotal for improving the efficiency of  $CH_4$  conversion to  $C_2H_6$  in the presence of  $N_2O$ .

In both  $O_{2^-}$  and  $N_2O$ -OCM, primarily formed  $C_2H_6$  is converted to  $C_2H_4$  as reflected by the decreasing and increasing dependence of the selectivity to these products on CH<sub>4</sub> conversion (Figure 2). N<sub>2</sub>O appears to be superior to O<sub>2</sub> in promoting this reaction as indicated by the higher selectivity ratio of  $C_2H_4$  to  $C_2H_6$  (Figure S5). The selectivity to CO and  $CO_2$  decreased and increased respectively with increasing methane conversion due to oxidation of CO to  $CO_2$ . Since the selectivity to  $C_{2+}$ -hydrocarbons or carbon oxides does not change significantly with increasing  $CH_4$ conversion, the desired products are not involved in consecutive oxidation reactions (Figure S6).

Direct N<sub>2</sub>O decomposition over  $Gd_2O_3$  and 0.1BaGd was also investigated. Consistent with proposed mechanisms for this reaction over various catalysts,<sup>[18]</sup> N<sub>2</sub>O first reacts with an anion vacancy ([]) to form gas-phase N<sub>2</sub> and a monatomic adsorbed oxygen species ([O]) (eq 1). Gas-phase O<sub>2</sub> can be formed by a reversible recombination of two [O] (eq 2) or an irreversible reaction of N<sub>2</sub>O with [O] (eq 3).

To distinguish between these mechanisms, we investigated whether the rate of  $N_2O$  decomposition is affected by the addition of  $O_2$ . A negative effect was observed (Figure S7). Thus,  $O_2$  should be formed according to eq 2. The difference between the catalysts in the inhibiting  $O_2$  effect is related to the kinetics of  $O_2$  formation/desorption, the latter processes being slower on the modified catalyst compared to  $Gd_2O_3$ .

$$N_2 O + [] \to N_2 + [O] \tag{1}$$

$$[O] + [O] \rightleftharpoons \dots \rightleftharpoons O_2 + 2[] \tag{2}$$

$$N_2O + [O] \to N_2 + O_2 + []$$
 (3)

The dissimilar ability of  $Gd_2O_3$  and its modified counterparts to form  $O_2$  from  $N_2O$  was independently proved by analyzing the height-normalized responses of  $O_2$  and  $N_2$ (Figure 3a,b and Figure S8) recorded after pulsing of



*Figure 3.* The height-normalized responses of  $N_2O$ ,  $N_2$  and  $O_2$  after pulsing  $N_2O$  over (a)  $Gd_2O_3$  and (b) 0.1BaGd. (c) The time of maximum intensity ( $t_{max}$ ) of the height-normalized response of  $O_2$  after pulsing  $N_2O$  over *x*BaGd. (d) The height-normalized responses of  $N_2O$  and  $O_2$  after  $N_2O$ -CH<sub>4</sub> pump-probe tests with a time delay of 0.5 s over 0.1BaGd. (e) r(CO<sub>x</sub>) in  $N_2O$ -OCM versus  $t_{max}$  of  $O_2$ . (f) r( $C_2H_6$ ) in  $N_2O$ -OCM versus  $t_{max}$  of  $O_2$ .

Angew. Chem. Int. Ed. 2024, e202319192 (3 of 6)

 $N_2O:Ne=1$  at 700 °C in a temporal analysis of products reactor.<sup>[19]</sup> Since the O<sub>2</sub> concentration is still high when the N<sub>2</sub> concentration is zero, recombination of [O] originated from N<sub>2</sub>O should contribute to O<sub>2</sub> formation.

For a simple qualitative analysis of the rates of  $O_2$  and  $N_2$  formation, we use the time of maximum intensity  $(t_{max})$  of the height-normalized  $O_2$  and  $N_2$  responses. For both unmodified and modified  $Gd_2O_3$ ,  $O_2$  formation should limit  $N_2O$  decomposition because  $t_{max}$  of  $O_2$  is significantly higher than  $t_{max}$  of  $N_2$  (Table S3). As the former value becomes larger in the presence of Ba promoter and with its rising concentration, the rate of [O] recombination should be hindered by the promoter probably due to an increase in the bonding strength of [O]. This statement is supported by the time required to reach zero  $O_2$  concentration (Figure S9).

The involvement of [O] in CH<sub>4</sub> activation was verified by pump-probe experiments with N<sub>2</sub>O and CH<sub>4</sub>. When these gases were pulsed with a time delay ( $\Delta$ t) of 0.5 s, the t<sub>max</sub> value of the O<sub>2</sub> response did not change compared to that of single N<sub>2</sub>O pulses (Figures 3d and S10a). Its intensity, however, decreased sharply when CH<sub>4</sub> entered the reactor because [O] oxidized this alkane to carbon oxides. C<sub>2</sub>H<sub>6</sub> was not observed due to the high-vacuum conditions, which are unfavorable for recombination of methyl radicals. An increase in  $\Delta$ t caused a decrease in coverage by [O] due to recombination of these species to O<sub>2</sub> (eq.2), which is detrimental to methane conversion (Figure S10b). The lower conversion of CH<sub>4</sub> over Gd<sub>2</sub>O<sub>3</sub> compared to 0.1BaGd is explained by the higher recombination rate of [O] to gasphase O<sub>2</sub>. Lattice oxygen of Gd<sub>2</sub>O<sub>3</sub> or BaO is significantly less active for  $CH_4$  oxidation than [O] as proven by pulse experiments with  $CH_4$  only (Figure S10c-f).

Based on the above results, we propose that the different activity of Gd<sub>2</sub>O<sub>3</sub> and its modified counterparts to form O<sub>2</sub> from  $N_2O$  is the origin of the dissimilar behavior of these catalysts in O<sub>2</sub>- and N<sub>2</sub>O-OCM. Since the recombination of [O] to gas-phase  $O_2$  over the modified catalysts (eq 2) is slow, CH<sub>4</sub> should react mainly with [O] in N<sub>2</sub>O–OCM. The much faster recombination of [O] over Gd<sub>2</sub>O<sub>3</sub> favors the formation of gas-phase O2. Thus, O2-OCM could occur during N2O-OCM over Gd2O3. This scenario can explain why in contrast to Gd<sub>2</sub>O<sub>3</sub> the selectivity to C<sub>2+</sub>-hydrocarbons is improved over xBaGd, 0.1NaGd and 0.1SrGd when O2 is replaced by N2O (Figures 1 and 2g,h). This explanation is indirectly supported by a negative relationship between t<sub>max</sub> of the O<sub>2</sub> response in N<sub>2</sub>O pulse tests and  $r(CO_x)$  or  $r(CH_4)$  in N<sub>2</sub>O–OCM (Figures 3e, S11a). The stronger the oxygen species are bound, the lower their ability to oxidize CH<sub>4</sub>/C<sub>2</sub>-hydrocarbons to carbon oxides. The volcano-type relationship between  $r(C_2H_6)$  and Ba loading in Figure 2b can now be rationalized. This rate also follows a volcano-type relationship with  $t_{max}$  (Figure 3f). Importantly, 0.1NaGd and 0.1SrGd fit this relationship. Thus, an appropriate binding strength of [O] to the catalyst surface is vital to achieve the maximum  $r(C_2H_6)$ , while the  $r(CH_4)$  decreases with the strength due to the inhibition of CO<sub>x</sub> formation (Figure S11b).

The impact of the performance of 0.1BaGd achieved in  $N_2O$ -OCM is demonstrated by Figure 4a, where data from previous  $N_2O$ -OCM studies with different catalysts are also



*Figure 4.* Selectivity-conversion values for C<sub>2</sub>- or C<sub>2+</sub>-hydrocarbons obtained in the present and previous (a) N<sub>2</sub>O–OCM or (b) O<sub>2</sub>–OCM studies. Current reaction conditions:  $\tau$  is 0.75 or 0.43 g<sub>cat</sub>·min·mmol<sub>CH4</sub><sup>-1</sup>, CH<sub>4</sub>/N<sub>2</sub>O=4. Literature data are given in Tables S4 for (a) and S5 for (b).

Angew. Chem. Int. Ed. 2024, e202319192 (4 of 6)

5213773. () Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/anie.202319192 by Leibniz-Institut for Katalyse, Wiley Online Library on [01/03/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

presented (Table S4). The 0.1BaGd catalyst showed the selectivity to C<sub>2+</sub> and C<sub>2</sub>-hydrocarbons of 89% and 82% at 3.5% CH<sub>4</sub> conversion, and 87% and 80% at 8% CH<sub>4</sub> conversion at 650 and 700°C, respectively. Performing N<sub>2</sub>O–OCM with a feed containing 70 vol% CH<sub>4</sub> further improved the selectivity to 89.8% and 81% at 11% CH<sub>4</sub> conversion. All catalysts tested so far were less efficient. Potassium lanthanide chlorides,<sup>[16c]</sup> Ca-actinide oxides,<sup>[20]</sup> Ca-lanthanide oxides,<sup>[6]</sup> Sm-based catalysts,<sup>[16a]</sup> LiMg-based catalysts,<sup>[13]</sup> and Na<sub>2</sub>WO<sub>4</sub>-based catalysts<sup>[13]</sup> operated at higher temperatures and achieved similar C<sub>2+</sub>-hydrocarbon yields but lower selectivity. According to a techno-economic analysis,<sup>[21]</sup> however, the final price of ethylene is more influenced by selectivity than by methane conversion.

The C<sub>2+</sub>-selectivity of 90% at 11% CH<sub>4</sub> conversion obtained in the present study in N<sub>2</sub>O–OCM at 700 °C is also remarkable in view of the O<sub>2</sub>–OCM data obtained over different catalysts summarized in the database of Ref.,<sup>[4]</sup> which contains about 1800 selectivity-conversion data points. Using this database, we have selected catalysts showing the selectivity to C<sub>2</sub>-hydrocarbons above 80% at CH<sub>4</sub> conversion degrees above 5% (Table S5). Only the most promising Mn/Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalysts achieved the selectivity between 81 and 89% at methane conversion above 15% but above 750 °C (Figure 4b).

In conclusion, we have unveiled  $Gd_2O_3$  modified with Ba, Na or Sr as a highly efficient system for N<sub>2</sub>O–OCM at 650–700 °C. The promoter enhances the binding strength of mono-atomically adsorbed oxygen species formed from N<sub>2</sub>O, which is pivotal for hindering their recombination to a diatomic adsorbed oxygen species, which shows higher ability for the direct CH<sub>4</sub> oxidation to carbon oxides. The mono-atomic species appears to have a higher selectivity for the conversion of CH<sub>4</sub> to C<sub>2</sub>H<sub>6</sub>. The established fundamentals provide clarity on the role of oxygen species in controlling product selectivity and can contribute to the design of OCM catalysts that also operate selectively with O<sub>2</sub>.

#### Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 21961132026, 22225807, 22021004) and Deutsche Forschungsgemeinschaft (KO 2261/11-1) within a joint Sino-German research project. The authors thank Kathleen Schubert for ex situ XRD measurements. Kai Wu acknowledges the support from the China Scholarship Council. Open Access funding enabled and organized by Projekt DEAL.

#### **Conflict of Interest**

The authors declare no conflict of interest.

#### Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: oxidative coupling of methane  $\cdot$  N<sub>2</sub>O–OCM  $\cdot$  temporal analysis of products  $\cdot$  reaction mechanism  $\cdot$  oxygen species

- a) E. V. Kondratenko, T. Peppel, D. Seeburg, V. A. Kondratenko, N. Kalevaru, A. Martin, S. Wohlrab, *Catal. Sci. Technol.* **2017**, *7*, 366–381; b) P. Schwach, X. Pan, X. Bao, *Chem. Rev.* **2017**, *117*, 8497–8520.
- [2] a) P. Wang, G. Zhao, Y. Wang, Y. Lu, *Sci. Adv.* 2017, *3*, e1603180; b) S. Arndt, T. Otremba, U. Simon, M. Yildiz, H. Schubert, R. Schomäcker, *Appl. Catal. A* 2012, *425–426*, 53–61; c) D. Kiani, S. Sourav, J. Baltrusaitis, I. E. Wachs, *ACS Catal.* 2019, *9*, 5912–5928.
- [3] H. Wang, R. Schmack, S. Sokolov, E. V. Kondratenko, A. Mazheika, R. Kraehnert, ACS Catal. 2022, 12, 9325–9338.
- [4] U. Zavyalova, M. Holena, R. Schlögl, M. Baerns, *ChemCatChem* 2011, 3, 1935–1947.
- [5] A. Dedov, A. Loktev, I. Moiseev, A. Aboukais, J.-F. Lamonier, I. Filimonov, *Appl. Catal. A* 2003, 245, 209–220.
- [6] A. C. Ferreira, T. A. Gasche, J. Leal, J. B. Branco, J. Mol. Catal. 2017, 443, 155–164.
- [7] Q. Zhou, Z.-Q. Wang, Z. Li, J. Wang, M. Xu, S. Zou, J. Yang, Y. Pan, X.-Q. Gong, L. Xiao, ACS Catal. 2021, 11, 14651– 14659.
- [8] A. S. Jones, D. Aziz, J. Ilsemann, M. Bäumer, H. Hagelin-Weaver, *Catal. Today* 2021, 365, 58–70.
- [9] F. Alahmadi, A. Bavykina, D. Poloneeva, A. Ramirez, R. Schucker, J. Gascon, *AlChE J.* 2023, 69, e17959.
- [10] A. M. Arinaga, M. C. Ziegelski, T. J. Marks, Angew. Chem. Int. Ed. 2021, 60, 10502–10515.
- [11] K. Langfeld, B. Frank, V. E. Strempel, C. Berger-Karin, G. Weinberg, E. V. Kondratenko, R. Schomäcker, *Appl. Catal. A* 2012, 417, 145–152.
- [12] Z. Aydin, A. Zanina, V. A. Kondratenko, J. Rabeah, J. Li, J. Chen, Y. Li, G. Jiang, H. Lund, S. Bartling, *ACS Catal.* 2022, *12*, 1298–1309.
- [13] H. Liu, Y. Wei, J. Caro, H. Wang, ChemCatChem 2010, 2, 1539–1542.
- [14] a) H. Özdemir, M. F. Öksüzömer, M. Ali Gürkaynak, *Chem. Eng. Commun.* 2019, 206, 48–60; b) O. Buyevskaya, M. Baems, *Catal. Today* 1994, 21, 301–308; c) J. B. Branco, A. C. Ferreira, A. M. B. do Rego, A. M. Ferraria, G. Lopes, T. A. Gasche, *J. Mol. Liq.* 2014, 191, 100–106.
- [15] a) A. Shimizu, K. Tanaka, M. Fujimori, *Chemosphere-Global Change Science* 2000, 2, 425–434; b) J. Rios, J. Lebeau, T. Yang, S. Li, M. D. Lynch, *Green Chem.* 2021, 23, 3172–3190.
- [16] a) V. Parmon, G. Panov, A. Uriarte, A. Noskov, *Catal. Today* 2005, 100, 115–131; b) J. Ludvíková, M. Jabłońska, K. Jirátová, L. Chmielarz, J. Balabánová, F. Kovanda, L. Obalová, *Res. Chem. Intermed.* 2016, 42, 2669–2690; c) Z. Tang, I. Surin, A. Rasmussen, F. Krumeich, E. V. Kondratenko, V. A. Kondratenko, J. Pérez-Ramírez, *Angew. Chem. Int. Ed.* 2022, 61, e202200772.
- [17] C. Au, K. Chen, C. Ng, Appl. Catal. A 1998, 170, 81-92.
- [18] a) E. V. Kondratenko, V. A. Kondratenko, M. Santiago, J. Pérez-Ramírez, *Appl. Catal. B* 2010, 99, 66–73; b) A. Anshits, E. Kondratenko, N. Maksimov, *Catal. Today* 1994, 21, 281– 287.
- [19] a) J. T. Gleaves, G. S. Yablonskii, P. Phanawadee, Y. Schuurman, Appl. Catal. A 1997, 160, 55–88; b) J. Pérez-Ramírez,

Angew. Chem. Int. Ed. 2024, e202319192 (5 of 6)



E. V. Kondratenko, *Catal. Today* **2007**, *121*, 160–169; c) K. Morgan, N. Maguire, R. Fushimi, J. Gleaves, A. Goguet, M. Harold, E. V. Kondratenko, U. Menon, Y. Schuurman, G. Yablonsky, *Catal. Sci. Technol.* **2017**, *7*, 2416–2439.

- [20] J. B. Branco, A. C. Ferreira, J. P. Leal, J. Mol. Catal. A 2014, 390, 45–51.
- [21] A. Cruellas, J. Bakker, M. van Sint Annaland, J. Medrano, F. Gallucci, *Energy Convers. Manage.* 2019, 198, 111789.
- [22] A. Perechodjuk, V. A. Kondratenko, H. Lund, N. Rockstroh, E. V. Kondratenko, *Chem. Commun.* **2020**, *56*, 13021–13024.

Manuscript received: December 12, 2023 Accepted manuscript online: January 25, 2024 Version of record online:



## Communications

## Communications

#### Heterogeneous Catalysis

K. Wu, A. Zanina, V. A. Kondratenko, L. Xu, J. Li, J. Chen, H. Lund, S. Bartling, Y. Li, G. Jiang,\* E. V. Kondratenko\* \_\_\_\_\_ e202319192

Fundamentals of Unanticipated Efficiency of Gd<sub>2</sub>O<sub>3</sub>-based Catalysts in Oxidative Coupling of Methane



Kinetic tests combined with temporal analysis of products revealed the fundamentals relevant for regulating the efficiency of the oxidative coupling of  $CH_4$  to  $C_2H_6$  over Gd-based catalysts. When  $Gd_2O_3$  is modified with Na, Sr or Ba, the use of N<sub>2</sub>O instead of O<sub>2</sub> significantly improves the selectivity even at 650 °C. The promoters affect the binding strength of monoatomic oxygen species derived from N<sub>2</sub>O and thus control the methane oxidation to carbon oxides.